$$q'' = \frac{q}{A} \qquad \left[\frac{W}{m^2} \right]$$

Rate of heat transfer

$$q = q'' \cdot A \quad [W]$$

Rate of heat transfer per unit length

$$q' = \frac{q}{L} \quad \left[\frac{W}{m}\right]$$

CONDUCTION

transfer of energy by interaction of molecules (thermal diffusion)

direction of the heat flux T is opposite to the direction T(x)of the temperature gradient → q"_{cond} (x) ∂T

Fourier's Law

 $q''_{cond} = -k \frac{\partial T}{\partial x}$

 $k \left[\frac{W}{m \cdot K} \right]$ thermal conductivity (p.4,70)

Typical values of k

II

CONVECTION

transfer of energy from a surface to fluid due to conduction and bulk motion of fluid (advection)

 $q''_{conv} = h(T_s - T_{\infty})$

positive direction of the heat flux is from the surface: $q''_{conv}>0 \quad if \quad T_s>T_\infty$ $q''_{conv} < 0$ if $T_s < T_{\infty}$

Type of convection

Typical values of h

liquids:

2 - 2550 - 1000

Newton's Law

 $h \left[\frac{W}{m^2 \cdot K} \right] \begin{array}{c} convection \\ heat transfer \\ \dots \end{array}$

25-250 100-20,000

boiling

2,500 - 100,000

Ш

RADIATION

energy transfer by electromagnetic waves

surroundings q_{rad}''

positive direction of the heat flux is from the surface:

 $q''_{rad} > 0$ if $T_s > T_{sur}$ $q''_{rad} < 0$ if $T_s < T_{sur}$

Stefan - Boltzmann's Law

$$q_{rad}'' = \varepsilon \sigma (T_s^4 - T_{sur}^4)$$

Note that the heat flux is a directional quantity: in 1-D the direction is defined by the sign \pm